Chapitre 2 – Caractérisation des états de la matière – Christian Scheiber








télécharger 74.81 Kb.
titreChapitre 2 – Caractérisation des états de la matière – Christian Scheiber
page1/2
date de publication06.01.2017
taille74.81 Kb.
typeDocumentos
b.21-bal.com > droit > Documentos
  1   2
Chapitre 2 – Caractérisation des états de la matière – Christian Scheiber

PARTIE 1 : ETAT GAZEUX
I – Introduction
A) Thermodynamique Classique et Statistiques
- La Thermodynamique, c’est l’étude des systèmes macroscopiques en terme d’échange d’énergie et/ou de matière avec le milieu extérieur.
- Il existe deux types de thermodynamiques :
- Classique : qui décrit les relations entre les différentes propriétés macroscopiques.
- Statistique : qui explique les lois de la mécanique à l’échelle microscopique.
- La Thermodynamique repose sur deux principes fondamentaux :
- La conservation de l’énergie.
- Le sens de la transformation.
B) Le Système Thermodynamique
- Voici les différents systèmes dans lesquels on étudie la Thermodynamique :

Système

Echange de matière

Echange d’énergie

Isolé

-

-

Fermé

-

+

Ouvert

+

+


- Lorsqu’il n’y a pas de transfert de chaleur, on parle de système adiabatique.
- Q = 0 : Adiabatique
- Q > 0 : Apport de Chaleur (Selon la convention du Banquier)
- Q < 0 : Perte de Chaleur (Selon la convention du Banquier)

- On établit les relations entre des Variables d’état qui peuvent être de différentes natures :
- Extensive (V, m, Concentration…)
Dépend de la quantité de matière
- Intensive (P, T)
Ne dépend pas de la quantité de matière.
- On ne s’intéresse qu’aux systèmes thermodynamiques chimiques.

C) Etat d’équilibre
- Etat de repos macroscopique qui est atteint spontanément par un système abandonné à lui-même.
- Les variables macroscopiques pour définir un état d’équilibre ont des valeurs fixes, définies et mesurables.

D) Equation d’état
- Les différentes variables ne sont pas toutes indépendantes. En effet, il existe une relation entre le Pression (« P »), le Volume (« V ») et la Température (« T ») : La Relation des Gaz Parfaits.
-
Avec n = Quantité de Matière (en Mole)
T = Température (en Kelvin)
R = Constante des gaz Parfait = 8,314J.mol-1.K-1
P = Pression (en Pascal)
V = Volume (en m3)

E) Transformation
- Réversibles : - Etat très proche de l’équilibre
- Les conditions extérieures doivent changer peu.
- Transformation lente.
- Irréversibles : - Se déroule spontanément dans la nature.
II – Température & Chaleur
A) Température et Chaleur
- La Température est une notion subjective qui découle du sens du toucher. Ce qu’on ressent ce n’est pas une différence de Température, mais de Chaleur que l’on évacue.

B) Echelle de température
- La mesure de la température nécessite une échelle. Celle-ci est historiquement fait n fonction de la température de Fusion et d’ébullition de l’eau à Patm. Tf = 0°C et Teb = 100°C.

C) Equilibre thermique
- Par conduction, le chaud se refroidit et vice versa jusqu’à égalité des températures.

D) Principe zéro de la thermodynamique.
- Si deux corps sont en équilibre thermique avec un troisième corps, alors ils sont en équilibre thermique entre eux.

E) Chaleur & Equilibre thermique
- La chaleur, c’est l’énergie transférée par des chocs moléculaires désordonnés.
- L’équilibre thermique c’est lorsque le transfert de chaleur (d’énergie donc !) s’arrête.

F) Rapidité du transfert de chaleur.
- La rapidité du transfert de chaleur dépend de la paroi qui sépare un système de l’extérieur.
- Lorsque l’on est en présence d’une paroi adiabatique, il n’y a pas de transfert de chaleur.
- Lorsque l’on est en présence d’une paroi diathermique, il y a un transfert rapide de chaleur.

III – Gaz Parfaits et Réels
A) Modèle du gaz parfait
- Un gaz parfait est un état idéal vers lequel tendent les gaz à densité faible.
- Les molécules sont des points matériels qui n’ont pas d’énergie interne et qui ne développent par conséquence qu’une énergie cinétique (énergie dépendant d’un mouvement.) Ces molécules vont sous l’effet de leur mouvement venir se heurter à la paroi du système et créer une force que l’on appelle la Pression.
- L’ensemble des variables d’état des gaz parfaits sont liées par la relation des gaz parfaits développée précédemment :


B) Température absolue d’un gaz parfait
- L’énergie cinétique est la température. En effet, la température se définit à l’état microscopique (on le verra plus loin) comme le degré d’agitation des molécules. Ce degré d’agitation augmente lorsque l’on augmente l’apport en énergie. Or, l’énergie cinétique est la seule énergie exprimée par les molécules !

- Lorsque l’on travaille sur les gaz parfaits, la pression est peu dense, peu changeante. Ainsi, il
est préférable de confronter les deux variables d’état : Température et Volume et de supposer la Pression comme constante.


- Si on effectue un diagramme avec ses 2 variables, on peut extrapoler et prévoir la valeur de la Température pour un volume nulle (= -273,15°C). Cette valeur correspond dès lors au zéro absolu est
vaut 1K !


C) Echelle de Température
- A partir du constat précédent, on peut lier les deux unités de la Température (K et °C) par la relation :
- On rappelle que le Kelvin est utilisé comme unité du SI. Il doit, par conséquent, être utilisé pour la relation des gaz parfaits et dans la constante des gaz parfait (8,314 J.K-1.mol-1)

- La relation PV = NRT génère plusieurs autres lois. En effet, on peut considérer dans certains cas que la Pression, la Température ou le Volume soit constant (Pas les 3 à la fois !!!). On obtient dès lors :
- La loi de Boyle Mariotte (Isotherme) : PV = Constant.
- La loi de Gay-Lussac (Isobare) : V = V0 . (1 + αt) ou
- La loi de Charles (Isochore) : = Constant
- Application : Volume occupée par une mole de gaz parfait à 20°C = 22,4 L
= 2,24.10
-4m3
E) A l’échelle microscopique
- A cette échelle, nous n’utilisons plus :
- La constante des gaz parfaits mais la constante de Boltzmann.
- Le nombre de moles mais le nombre de molécules.
En effet, on rappelle que l’énergie cinétique = Température.

F) Equivalence microscopique et macroscopique
- On peut passer de la formule macroscopique (PV=nRT) à la formule microscopique (PV=NKT) en utilisant le nombre d’Avogadro Na = 6,02.10-23 molécule.mol-1.


G) Température et énergie moléculaire.
- La température et l’énergie moléculaire sont des approches statistiques. En effet, on ne peut pas prendre en compte les vitesses et l’énergie cinétique de chaque molécule d’un échantillon. On fait alors, une approximation en cherchant l’énergie cinétique moyenne.
- La vitesse de chaque molécule n’étant pas, pour les mêmes raisons, calculable, on va partir du fait que les molécules ont la même masse et ainsi déterminer (en prenant en compte l’énergie cinétique moyenne) la vitesse quadratique moyenne.
- -


Vqmoy = Vitesse quadratique moyenne. C’est une information physique sur ce qui se passe dans le gaz. Comment se déplacent en moyenne les gaz d’un échantillon ?

H) Théorie cinétique des gaz parfaits. La Pression – Energie interne.
- Lorsque une molécule se translate dans un système, il est possible que celle-ci rencontre les molécules de la paroi et l’exercice d’une force apparait.
- L’ensemble des forces exercées sur la paroi du système par les molécules est une force moyenne que l’on nomme la pression

- Nous pouvons aller plus loin et lier la Pression au nombre de molécules, à leur masse, au volume occupé et leur vitesse par la relation suivante :

- De plus, comme la molécule n’a pas d’E potentielle, ETOT (ou Ut) = EC =
- Enfin, on peut déterminer que

Or,
PV = NkT=
-

I) Energie cinétique moyenne et Vitesse quadratique moyenne.
- La constante de Boltzmann vaut la = = 1,38.10-23
-
-


J) Distribution des vitesses moléculaires de H2
- Dans un échantillon, les molécules ne présentent pas toutes un seul et unique état. En effet, elles ne sont pas toutes identiques en terme de déplacement, d’énergie interne, de vitesse de translation (ainsi que vibration et rotation pour les gaz réels).
- Cependant, il est raisonnable de penser que, dans une condition définie (Température), il y a un état qui est prédominant. C’est pour cela que nous étudions la distribution de la loi de Maxwell Boltzmann (voir partie K.)
- Sur la courbe suivante qui illustre la distribution de Boltzmann, on peut observer la quantité de molécules pour une vitesse donnée. On cherche alors : A telle vitesse, combien a-t-on de molécules ? A terme, on cherchera à connaitre la valeur de la vitesse pour laquelle on a un maximum de molécules, dans des conditions de températures définies.

Dans le cas où T = 2000K, la vitesse moyenne des molécules se situe entre 3750 et 4500 m.s-1.

- On constate de plus que quand la température augmente :
- le nombre maximum de molécules diminue
- la courbe s’élargit.

K) Loi de Boltzmann
- La loi de Boltzmann permet de déterminer le nombre na de molécules qui ont une quantité d’énergie Ea à une température T.
-  On constate que plus Ea est élevée, plus na est faible.
- Selon les molécules, le niveau d’énergie varie grandement.

L) Mélange de gaz parfait
- Lors d’une association de gaz parfaits :
- Les gaz n’interagissent pas.
- on peut calculer la pression partielle de chaque gaz telle que : PV = nRT

M) Loi de Dalton
- Selon la loi de Dalton, la Pression totale exercée sur les parois du système est égale à la somme des pressions partielles des gaz constituant le mélange présent au sein du système.
- Autrement dit,
- De plus, dans le calcul de la relation des gaz parfaits, ntotal = ∑ ngaz
Application de la loi de Dalton :
- Quelle est la valeur de la PO2 au niveau de la mer et à une altitude de 7000m où P=0,45 atm ?
Données : Dans une mole d’air sec, on a 0,21 moles d’O2  Valeur constante jusqu’à 80 km d’alt.
Réponses

1) Au niveau de la mer : P = 1 atm  = 2,1.104 Pa
2) A 7000m : P = 0,45 atm  = 9450 Pa


N) Solubilité gaz – Loi de Henry
- La loi de Henry nous permet de relier la concentration d’un gaz dissous dans une solution et sa pression partielle dans l’air expiré.
- Avec qui dépend : - Nature du gaz et liquide
- La température
Application de la loi d’Henry :
- Lorsqu’un plongeur descend trop profondément, il respire une concentration beaucoup trop importante de Diazote ce qui provoque la maladie des caissons.

O) Les Gaz réels
- Dans les gaz parfaits, ils n’existaient pas certaines forces intermoléculaires qui sont pourtant présentes chez les gaz réels. On peut dès lors élargir l’équation des gaz parfaits en prenant en compte ces variations et en instaurant une nouvelle équation : l’équation de Van der Walls :


Avec : - = Pression supplémentaire due aux interactions entre les molécules.
- b = Volume des molécules (Covolume)


P) Gaz réels – Isotherme

Ce graphique présente 3 isothermes d’un gaz réel pour 3 valeurs de la température :
- T>Tc : Le système est dans la phase gazeuse
- T : On obtient un mélange liquide-gaz que l’on trouve en dessous de la courbe en pointillés que l’équation de VDW ne peut évidemment pas reproduire puisque correspondant à une seule phase.
- T=Tc : L’isotherme de VDW passe par un point critique C à partir duquel apparaît la phase liquide-gaz.
- T >>Tc : On se rapproche de la courbe du gaz parfait.

- VDW reproduit uniquement les branches extérieures à la courbe de saturation (courbe en pointillé).

IV – Energie interne
A) Présentation et Introduction
1 – Définition
- C’est l’énergie associée à la mécanique interne du système à l’échelle macroscopique.
- Elle est notée « Ut »
- L’énergie interne d’une molécule est la somme des énergies potentielle et cinétique de la molécule.
 Dans le cas d’un gaz parfait, il n’y a pas d’Energie potentielle, donc Ut = Ec = ½ mv²

2 – Variation de l’énergie interne
- Cette énergie interne varie sous l’influence du travail des forces extérieures au système.
- Les forces internes ne font pas varier l’énergie interne.
- Cette variation peut être étudiée selon 2 variables d’états parmi les 3 de référence (Pression, Volume et Température.)

- L’apport ou la perte d’énergie d’un système sont comptabilisé selon la convention du Banquier. Si le système reçoit de l’énergie, on a un +.
- Le milieu extérieur conserve l’énergie qui n’est pas présente dans le système (principe de conservation de l’énergie.)

- Lorsque l’on parle d’échange d’énergie effectuée par un travail, on parle en réalité de 2 travaux :
- le Travail : - Echange par des forces ordonnées (les molécules dans le même sens.)
- Le Travail n’est pas une fonction d’état.
- La Chaleur : - Echange par des forces désordonnées.

B) La Notion de Travail
1 – Travail des Forces de Pression


- Le Travail ne dépend pas que de l’état final et initial, ce n’est donc pas une fonction d’état.
2 – Travail à Pression constante


3 - Travail à Température constante


Le Travail a Volume constant est nul.

C) Notion de Chaleur
- La Chaleur est l’énergie échangée par des forces désordonnées. On peut parler de travail désordonné.
- Elle est notée « Q » et n’est pas une fonction d’état.
- Son unité SI est la joule (J) mais on utilise également l’unité usuelle qui est la Calorie (Q) qui est, historiquement, la quantité de chaleur qu’il faut apporter au système pour élever 1g d’eau de 1°C.
 1 Calorie = 4,7 Joules

- A Pression constante, Q = - Pe.(Vf-Vi)
- A Volume constant, Q = dUt (puisque W = 0)

V – Le Premier principe de la Thermodynamique : L’Enthalpie
A) Présentation générale
- La Variation d’énergie interne d’un système est la somme des quantité d’énergie apportées par le milieu extérieur. Soit, Ut = W + Q = -PdV + dQ
- Ce fonctionnement est valable pour les transformations réversibles et irréversibles.

B) Capacité Calorifique
1 - Système
C’est le rapport entre la chaleur et la différence de température.
1.1 - A volume constant
- , Soit
1.2 – A Pression constante.
- Malheureusement, l’expression de de la capacité calorifique à Volume constant n’est que rarement utilisée. L’expression de cette C.C. qui nous serait utile serait l’expression à Pression constante.
- Cette expression est plus difficile à mettre en œuvre, car W # 0 ! On obtient ainsi :

- Comme cette expression n’est pas très simple, on va introduire un nouvelle variable qui sera une fonction d’état : L’ENTHALPIE (notée « H ») telle que H = U + PV.
- H ne dépend que de T
- Dès lors,

2 – Massique
- C’est la chaleur absorbée par un kg de substance pour produire un changement de température de 1 degré.
- Elle vaut, en J.kg-1.K-1

3 – Molaire
- C’est la chaleur absorbée par une mole de substance pour produire un changement de température de 1 degré.
- Elle vaut, ,
Attention à ne pas se tromper entre :
- Capacité Calorifique (molaire ou massique) = ou
- Chaleur Spécifique (molaire ou massique) =
ou

De plus, on peut définir à partir des capacités calorifiques à Volume et Pression constants une valeur que l’on nomme Constante adiabatique (notée « γ ») et qui nous servira plus tard.
- On peut remarquer, par le biais d’expériences, que Cp > Cv dans le cas des gaz. Dans le cas des solides ou liquides, on considèras que Cp =Cv du fait de leur relative incompressibilité.

VI – Propriétés thermiques de la matière
A) Chaleur dégagée au cours d’une réaction chimique à Pression constante
- A Pression constante, la quantité e chaleur échangée au sein d’un système est égale à la variation d’enthalpie.
- De plus, comme la chaleur de la réaction ne dépend que de l’état initial et de l’état final, on peut décomposer le chemin des réactions chimiques tel que :


- Expérience de Joule-Kelvin : Cette expérience dont le schéma est représenté ci-dessous, nous enseigne sur le fait que l’énergie interne U ne varie pas selon la Pression ou le Volume, mais selon la Température. Dès lors U = U(T).

Etat initial : - Seul A contient un gaz parfait, B est vide et le robinet est fermé.
Etat intermédiaire : On ouvre le robinet
Etat final : Le gaz parfait se détend dans les compartiments A et B.
 PAS DE VARIATIONS DE TEMPERATURE.
B) Transformation adiabatique réversible d’un gaz parfait
- Lors d’une transformation adiabatique : PVγ = Constante
- Or,

C) Capacité Calorifique à Volume constant d’un gaz Poly-atomique.
- Pour rappel, les molécules des gaz réels interagissent entre-elles et présentent, en plus de leur composante translationnelle, deux autre composantes : Rotationnelle & Vibrationnelle (négligeable.)
- Sur une équation, on obtient :
-


D) Changement de phase d’un corps pur
- La plupart des substances existent sous 3 phases (liquide, solide, gaz) et passent d’une phase à l’autre selon des conditions particulières résumées par ce diagramme :

- On peut remarquer sur ce diagramme, 2 points caractéristiques :
- le point Critique (c) : Il se situe à l’extrémité de la courbe de vaporisation. Il indique un état qui passe de l’état liquide à l’état gazeux sans discontinuité.
- le point Triple (t) : Point auquel la substance présente les 3 états. Il se situe à la réunion des courbes de vaporisation, sublimation et fusion.

- Diagramme de changement d’état de l’eau. Il est particulier car sa courbe de fusion est de sens négatif (voir diagramme.) et son point triple est à une température d’environ 0,010°C

E) Chaleur latente
- C’est la quantité de chaleur qu’il faut apporter par masse donnée pour pouvoir passer d’un état à un autre. On la note L, et la chaleur obtenu est Q = L.m
- Pour avoir un aperçu clair de comment on utilise la chaleur latente, voici un diagramme qui permet de passer de l’état solide à l’état gazeux :


- Attention, il ne faut pas confondre chaleur latente et Capacité calorifique qui elle sert a augmenter la température. Si on reprend notre schéma, on obtient :

- On peut également parler de chaleur latente massique et molaire.

- Le Changement de phase Liquide-Vapeur. Lorsque l’on met en contact une même substance dans deux états différents (liquide et gazeux), il va coexister un échange de molécule de gaz entre ces 2 états. A Température constante et dans un système isolé, on constate à un certain temps une stabilisation de cet échange. La pression mesurée lors de cet équilibre est appelé pression de Vapeur saturante.
- Cette pression de vapeur saturante indique une saturation de l’air en molécule gazeuses de la substance et est caractérisée par :
- une valeur précise pour la substance étudiée
- l’indépendance vis-à-vis d’autre molécules de gaz d’une autre substance environnante. - une dépendance unique à la température.
- On parlera de tension de vapeur saturante si les deux états en présence sont un solide et un gaz (réaction de sublimation.)

F) Ebullition et évaporation
Diapo. 69 : Exercice de l’autocuiseur : Pourquoi on fait une division pour calculer la pression atmosphérique ?

1 – Evaporation
- C’est le phénomène qui fait s’échapper les molécules d’un liquide vers l’air ambiant afin de tendre vers une pression : la Pression de Vapeur saturante.
- Ce phénomène est continu dans un système non fermé car la Pression de vapeur saturante n’est jamais atteinte.
- Les molécules liquides qui peuvent sortir vers l’air ont une énergie cinétique importante.

2 – Ebullition
- La température d’ébullition est la température pour laquelle la pression P, que supporte le liquide, est strictement inférieure à la pression de vapeur saturante.
- Pour éviter qu’une substance n’atteigne sa température d’ébullition, il faut augmenter sa pression environnante.
VII – Deuxième principe de la Thermodynamique : Désordre et spontanéité
A) Introduction
1 – Insuffisance du premier principe
- Une réaction chimique a tendance à se produire dans un sens plutôt que dans l’autre. En effet, un café chaud posé sur une table à l’air libre aura tendance à se refroidir (et non pas à se réchauffer.)
- Cependant, si on considère uniquement le premier principe de la thermodynamique qui est un échange d’énergie avec le milieu extérieur afin de conserver l’énergie, il n’y a pas cette notion de sens de la réaction. Notion que nous allons introduire dès à présent.
- Cette notion de sens est définit par la notion d’irréversibilité. En effet, à l’échelle microscopique, on ne distingue pas le passage de molécules d’un état à un autre (on a l’impression que réversibles.) Pourtant, à l’échelle macroscopique, ce passage existe (et nous montre un sens – une irréversibilité.)

- On peut dès lors se demander qu’est-ce qui définit le sens ?

2 - Les solutions apportées par le 2° principe – Enoncé de Clausius et Kelvin
2.1 – Enoncé de Clausius
- Si un mouvement de chaleur passe spontanément de A vers B, le mouvement de B vers A ne se fera pas spontanément. En effet, un mouvement de chaleur se fait du plus froid vers le plus chaud.
- Pour pouvoir effectuer ce mouvement inverse de chaleur, il sera nécessaire d’utiliser un réservoir de chaleur qui va induire ce mouvement par apport d’un travail.

2.2 – Enoncé de Kelvin
- Il est possible de produire de la chaleur à partir d’un travail mais pas l’inverse !
B) Forme microscopique – Approche statistique
- Les molécules d’un système ont tendance à se rapprocher au repos d’un état désordonné.
- Un état macroscopique peut résultats d’un nombre astronomique d’états microscopiques. Il est donc nécessaire d’utiliser les probabilités des grands nombres et de poser que tous ces états microscopiques ont la même probabilité d’exister.
- Exemple : Partons d’un nombre N de molécules présentes dans 2 compartiments.
Combien y- a-t-il de configurations possibles ?
- Si les molécules sont discernables, on aura 2
N combinaisons.
- Si les molécules sont indiscernables, on aura N+1 combinaisons. XXX
- Si on doit représenter sur une équation cette probabilité de trouver un état microscopique à n molécules pour un état macroscopique à N molécules, on aura l’équation suivante :

Avec Ω = Nombre de complexions (d’états microscopiques pour un état macroscopique donné.)

-
L’état macroscopique tend à ce que ce nombre de complexion (Ω) atteigne une valeur maximum « aigu ». Cette valeur est atteint lorsque n = N/2. Cet état est l’équilibre !

C) La Détente Joule-Kelvin
- C’est l’évolution spontanée et irréversible d’un état vers un nombre de complexions maximum.
- Lorsque l’équilibre est atteint, on a une valeur maximale de Ω. De plus, à l’équilibre on a un nombre de molécules à peu près identique dans chaque compartiment.

D) L’Entropie
1 – Définition probabiliste
- L’entropie d’un système isolé est la variable à l’échelle microscopique qui mesure « le degré de désordre moléculaire. »
- Elle est notée S et est une fonction d’état qui augmente lorsque le désordre augmente. Par conséquent, lors de l’évolution spontanée d’un système isolé, l’entropie augmente (ΔS > 0)
-
- On peut également relier l’entropie d’un système à la quantité de chaleur Q apportée telle que :

- Comme l’entropie S est une fonction d’état, elle ne dépend que de l’état initial et de l’état final. - - C’est pourquoi, lorsque l’on est dans un système isolé et que la transformation est réversible, l’entropie S est nulle.

2 – Processus irréversible & Principe du Nernst
- Dans un système isolé, ΔS > 0 et l’entropie va en augmentant.
- Principe du Nernst (ou Troisième Principe de la TD) :
Si T = 0 K, alors S = 0

VIII - Enthalpie libre et Loi d’action de masse.
- L’Enthalpie libre (G) est utile lors de la détermination du sens de la réaction. On la confond parfois, à dessein, avec l’Energie libre (F) car ces 2 valeurs évoluent dans le même sens.

A) Enthalpie libre : Qu’est-ce que c’est ?
1 - Le Potentiel thermodynamique
- L’Entropie d’un système isolé va en augmentant et ne peut être négatif. Mais, dans un système ouvert, cette entropie peut décroitre.
- Pour résumé, un système va évoluer en fonction de son entropie et de son enthalpie. L’ensemble des contraintes (augmentation ou diminution) de ces deux variables (Entropie et Enthalpie) permettent de déterminer une autre variable qui résume ces contraintes : L’Enthalpie libre (« G »)

- Les différentes possibilités pour ΔG pour que la réaction soit SPONTANEE :



H

S

Circonstances

-

+

Majorités des réactions

- - -

-

Parfois

+

+++

Très Rarement

- Dans tous les cas, ΔG < 0 pour que la réaction soit spontanée.

2 - La Barrière de Potentiel
- La présence d’une barrière de potentiel ralentit fortement la réaction chimique. C’est pourquoi les processus biologiques ont mis en place des catalyseurs (les enzymes par exemple.) qui permettent d’accélérer ces réactions.

3 - Enthalpie libre d’un gaz ou d’un mélange
- Si on s’intéresse à l’enthalpie libre d’un gaz parfait, il faut prendre en compte deux composantes :
- L’enthalpie libre standard qui est l’enthalpie libre à la pression atmosphérique et a une température donnée 
- La variation d’enthalpie libre 
- On obtient dès lors, l’enthalpie libre molaire :


B) Loi d’action de masse
- Nous avons jusqu’à présent ignorer les variations de matières pour nous concentrer sur les variations d’énergie. Pourtant, ces variations de matière existent et peuvent être prises en compte dans nos calculs.
- Désormais, lorsque l’on prend en compte les échanges de matières, on ne parle plus d’enthalpie libre molaire mais de potentiel chimique noté µ tel que :
On retrouve la forme du calcul de l’enthalpie libre molaire.
- Ensuite, il convient de développer Pi/P0 en faisant une dérivée partielle de l’enthalpie libre molaire par rapport à la quantité de matière « ni » du constituant i.
- Soit,
- Ces relations sont connus en Biochimie sous le nom de loi d’action de masse et permettent de déterminer des constantes d’équilibre :
- Kp : pour les gaz.
- Kc : pour les solutions diluées.
- Ces constantes permettent de prévoir le sens de la réaction

1 – Pour un gaz
- La constante d’équilibre Kp :
- Est relative aux pressions partielles des gaz
- A la dimension d’une Pression élevé à la puissance δ = Réactifs –Produit.
- Ne dépend que de la température.-
On retrouve l’équation de Boltzmann.

2 – Pour des solutions diluées
- La Constante d’équilibre Kc :
- Est relative aux concentrations de la solution.
- Ne dépend que de la température.

-





  1   2

similaire:

Chapitre 2 – Caractérisation des états de la matière – Christian Scheiber iconChapitre 8 : Les états de la matière et les forces intermoléculaires
«boules à mites» (naphtalène), les bâtons désodorisants et la glace sèche sont trois exemples courants de sublimation

Chapitre 2 – Caractérisation des états de la matière – Christian Scheiber iconCatalogue des Indicateurs de suivi des Plans d’Elimination des Déchets Ménagers et Assimilés
«fondamentaux» en matière de suivi et présentés sous forme de fiche de caractérisation

Chapitre 2 – Caractérisation des états de la matière – Christian Scheiber iconUn programme pour les séniors*
«les règles de base» en matière de sécurité dans la pratique (la chute, la blessure) en matière d’alimentation, en matière d’hygiène,...

Chapitre 2 – Caractérisation des états de la matière – Christian Scheiber iconBiographie Christian Pihet
«Christian Pihet, professeur de géographie à l’université d’Angers est chercheur à l’umr du cnrs «Espaces et sociétés». IL est également...

Chapitre 2 – Caractérisation des états de la matière – Christian Scheiber iconRapport de mission
«push pull»; (III) Caractérisation des variétés locales de céréales et légumineuses en vue de l’enregistrement pour le Sud; (IV)...

Chapitre 2 – Caractérisation des états de la matière – Christian Scheiber iconExaminateurs: Mr atmani djebbar, Professeur, uam/Bejaia
«Extraction, caractérisation des polysaccharides et des polyphénols issus des sous produits oléicoles. Valorisation des polysaccharides...

Chapitre 2 – Caractérisation des états de la matière – Christian Scheiber iconRéunion des États parties

Chapitre 2 – Caractérisation des états de la matière – Christian Scheiber iconCartographie céRÉbrale des états de conscience ?

Chapitre 2 – Caractérisation des états de la matière – Christian Scheiber iconC urriculum vitae
«disafa» à Grugliasco, Turin, Italie. Etude technologique et caractérisation rhéologique des variétés et cultivars locaux d’orge...

Chapitre 2 – Caractérisation des états de la matière – Christian Scheiber iconLe scénario d’évolution
«économie», «milieux profondément modifiés» et «impacts et pressions» ont déjà contribué et contribueront à préciser le contenu des...








Tous droits réservés. Copyright © 2016
contacts
b.21-bal.com