Introduction à la biologie cellulaire








télécharger 74.62 Kb.
titreIntroduction à la biologie cellulaire
date de publication18.10.2016
taille74.62 Kb.
typeDocumentos
b.21-bal.com > loi > Documentos



Introduction à la biologie cellulaire.

CM  n°1
C’est en Grèce, au 17éme siècle avant JC qu’apparaît le premier traité d’anatomie fondamentale.

Ce papyrus est le premier document sur la périphérie (le cerveau contrôle la périphérie), réfuté par les Mésopotamiens, Hébreux, Grec, et notamment Homère, faisant une séparation nette entre âme / corps soutenant la thèse cardiocentriste plaçant le cœur au centre de tout.

Hippocrate défend la théorie céphalocentriste.

Platon énonce dans son traité de Philosophie que l’âme est divisée en trois parties :

Intellectuelle : la tête (immortelle)

Irascible et concupiscible : qui sont capables de générer la colère, localisées au niveau du thorax et de l’abdomen (parties mortelles)
C’est la Théorie cardiocentriste avec Aristote qui traversera la Moyen-âge.
Au 17éme siècle on voit apparaître des dissections de cadavres, ainsi que les travaux et dessins de Léonard de Vinci.
Pour Descartes, chercheur et philosophe, le corps et l’esprit sont séparés. Le corps est vu comme une machine et le cerveau la fait fonctionner. Il pense que, si jonction il y a entre l’âme et le corps elle se fait au niveau du cerveau dans la glande pinéale ou Epiphyse (siége de l’âme). L’âme est immortelle et se trouve dans l’encéphale.
Spinoza défend la Théorie moniste : le corps et l’esprit ne font qu’un.
A partir du 17éme siècle apparaissent les premiers microscopes. Petit à petit ils se perfectionnent, au 19éme siècle ils deviennent suffisamment puissants pour voir les neurones.
Au 19-20éme siècle, Golgi dessinent tous les types de neurones se trouvant dans le système nerveux central. Il recevra le prix Nobel de médecine et de physiologie en 1906 pour l'ensemble de ses travaux.
Darwin (1809-1882) : fondateur de la théorie moderne de l’évolution et la « sélection naturelle ».

Pasteur met fin à la génération spontanée.
Schleiden et Shawn ont proposé la théorie cellulaire « Tous les êtres vivants, tous les organismes vivants, animaux comme végétaux sont constitués de cellules. La cellule est l’unité du vivant car elle a la possibilité de fabriquer de l’énergie, transformer des molécules, de se reproduire, d’évoluer, de varier selon les conditions environnementales. ».
Au 20éme siècle ont découvre l’ADN.
On considère le corps dans son ensemble, la vision intégrée : le cerveau seul ne peut pas vivre.

Introduction :
ORGANISMES (animal ou végétal)
APPAREILS (respiratoire, digestif, reproducteur)
ORGANES (poumons, cœur, foie, estomac, ovaire)
TISSUS (cardiaque, musculaire, conjonctif, nerveux)
CELLULE (cardiaque, intestinale, nerveuse)
ULTRA STRUCTURE (noyau, réticulum, lysosomes)
MACROMOLECULES (protides, lipides, glucides…)
MOLECULES (eau, urée, acide aminé, acide gras...)
ATOMES (carbone, oxygène, souffre, azote, hydrogène)
PARTICULES (électrons, protons, neutrons, quarks…)
I) Organisation Générale de la cellule.
La cellule représente un système moléculaire et biochimique, organisé de sorte à être relativement indépendant, qui puisse se reproduire, manger, fabriquer de l’énergie et de métaboliser des molécules.
Métabolisme : Transformer ; le métabolisme se divise en deux ;

Anabolisme : fabrication de molécules.

Catabolisme : destructions des molécules.
Elles ne sont pas visible à l’œil nu, elles mesurent 1 à 20 µm (micro mètres) (1µm=10-6 m)

Il existe environ 200 types de cellules différents.
Grâce au microscope optique et électronique on met en évidence deux types de cellules.
EUCARYOTES : Possédant un noyau. Ce sont les cellules qui composent tous les organismes animal et végétal.
PROCARYOTE : Ne possédant pas de noyaux. Ce sont les cellules dites primitives qui ne possèdent pas de noyau et l’ADN est libre dans la cellule.

Ce sont les bactéries et les algues bleues.
1.1 Les cellules Eucaryotes.
De quoi est constituée la cellule Eucaryote ?

Mitochondrie

Pores

Nucléaires
Lysosomes

Noyau

La membrane plasmique

Le cytoplasme

Inclusions

Le nucléole

Enveloppe

Nucléaire

Chromatine

Appareil de Golgi

Réticulum

Endoplasmique

Ribosomes

Le cytosquelette

Elle est constituée d’une membrane plasmique qui sépare le milieu extra cellulaire du milieu intra cellulaire, elle a un rôle d’échange et permet certaine spécificité selon les types de cellules, elle peut être renforcée par la chitine.
Le milieu de remplissage ; cytoplasme, comprend :

-le hyaloplasme : Milieu de remplissage au sens strict, composé d’eau et de petite molécules, de sels minéraux etc.…Il est plus au moins visqueux en fonction de la quantité d’eau et permet le mouvement des molécules et des inclusions du cytoplasme.

-Inclusions : Gouttelettes lipidiques

-Organites cellulaires : Ils sont nombreux et varié.
Les mitochondries sont des organites producteurs d’énergie. Le réticulum endoplasmique et l’appareil de Golgi servent à la fabrication des protéines. Les ribosomes peuvent être libres dans la cellule ou attachés au réticulum endoplasmique.

Ils sont tous les trois essentiels pour la synthèse des protéines.
Les lysosomes nettoient la cellule.
Le cytosquelette permet de maintenir la forme de la cellule et permet le transport de certaines molécules d’un endroit à un autre de la cellule.
Le noyau est le centre de la cellule il est composé de pores nucléaires, d’une enveloppe nucléaire de chromatine (ADN) et du nucléole qui contient l’ARN.
La cellule végétale comprend en plus :

- des chloroplastes, organisme qui contiennent de la chlorophylle pour fabriquer de l’oxygène.

-des vacuoles (sac rempli de glucides exemple : amidon).

1.2 Les cellules procaryotes et les virus.
Bactéries : Escherichia Coli - Algues bleues.


Paroi cellulaire (paroi bactérienne)



Membrane




Mitochondrie/mesosome :

Fabrique de l’énergie.


. . . … .

. ………….

.




Cytoplasme, etc.




Nucloïde (libre dans le cytoplasme)


Ribosomes






Taille : 1 a 3 µm. Elle possède des ribosomes, des mitochondries et des inclusions.
Les Virus :

-Structure non autonome 

-taille : 0,05à 1 micron (n’est observable qu’au microscope électronique
Capside protéique : Enveloppe qui protége soit l’ADN soit l’ARN (reproduction du virus.

ARN
Les Prions :

La protéine prion est présente dans un certain nombre d’organes : reins, cœur, poumons, thymus, foie, etc.

La protéine normale devient alors anormale, elle change de configuration à cause d’un facteur « x » et ne peut plus être dégradée par la cellule. Une accumulation qui peu à peu explose et libère toutes ses protéines anormales et la contamination se fait.
Le contact d’une cellule normale et anormale génère une déformation de la cellule normale : maladie de Creutzfeldt Jacob.


II) La membrane plasmique :
Structure dynamique toujours en mouvement

Structure fonctionnelle par de nombreux échanges.
2.1 Structure moléculaire et composition chimique.
Elle est composée majoritairement de lipides et de protides.
1) Lipides (35%)
-Phospholipides : composés de glycérol et de 2 ou 3 acide gras

-Cholestérol

Tête hydrophile : phosphate

Corps hydrophobe : acides gras.



2) Protéines (55%)
-Enzyme : protéine fonctionnelle

-Protéines de structures

-récepteurs : sorte d’antenne qui collecte des informations.
3) Glucides (10%)
Du côté extérieur de la membrane sont toujours associé a un lipide ou une protéine :

-Glycolipides

-Glycoprotéines

=

GLYCOCALLIX ou CELL COAT

La membrane est composée de 3 couches
Singer et Nicholson ont dans les années 70 proposé le modèle de la mosaïque fluide qui présente les caractéristiques suivantes :
-Une bi couche de phospholipide, dedans sont insérées les molécules de cholestérol (soit côté intra , soit côté extra, insérées également des protéines transmembranaires , protéines canales (traverse la double couche de phospholipides), des protéines de surface (du côté intra ou extra cellulaire)
Tête hydrophobe ; phospholipides

Queue hydrophobe

Protéine périphérique

Glucide

INTERIEUR

EXTERIEUR
On parle de la membrane plasmique comme d’une mosaïque fluide car toutes ces molécules ne sont pas statiques. Il peut y avoir des déplacements latéraux des phospholipides mais aussi des mouvements (flip-flop : phospholipides qui s’inversent du haut vers le bas et vice versa)

La fluidité dépend aussi de la température et du taux de cholestérol.
2.2 Les principaux rôles de la membrane plasmique.
2.2.1 Les échanges entre le milieu extra cellulaire et intra cellulaire : perméabilité membranaire.
La membrane plasmique joue un rôle important car elle permet de récupérer des nutriments de l’extérieur et d’exporter les déchets.

Cette membrane n’est pas a 100% perméable, elle est semi perméable car le transport des molécules se fait de façon régulé
a) Transport des petites molécules.

Osmose/diffusion facilité.
Le transport passif : qui ne nécessite pas d’énergie (se fait dans le sens du gradient de concentration), tandis que le transport actif consomme de l’énergie. (Se fait dans le sens inverse du gradient de concentration)

Le transfert de l’eau (H20), se fait selon le mécanisme de l’osmose. (Capable de traverser la membrane sans apport d’énergie)

« L’eau traverse une membrane semi perméable en se déplaçant du compartiment ayant la solution la moins concentré vers le compartiment ayant la solution la plus concentrée. »
L’échange d’eau au travers de la membrane permet de réguler l’hydratation mais aussi la densité de molécules de part et d’autre de cette membrane.
Petites molécules non ionisées.
Dépend de trois facteurs :

La taille : plus elles sont grandes, moins elles passent facilement.

La solubilité dans les lipides : plus elles sont solubles plus elles passent facilement.

Se déplace dans les sens du gradient de concentration : du plus concentré au moins concentré.
Petites molécules ionisées.
Dépend des trois facteurs ci dessus, mais en plus le transit dépendra de leur charge.
Gradient électrochimique : attiré par la charge oppose.

La membrane est chargée positivement a l’extérieur et négativement à l’intérieur.
++++++++++++++++++++++++++

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Extérieur

Intérieur

Membrane


Diffusion facilitée :


Externe.




Protéines transmembranaires



Interne


Transport actif :
Permet les échanges qui se font contre le gradient de concentration (-vers+)

Cela se fait à l’aide d’une pompe ex : pompe Na+/K+) l’énergie nécessaire à la pompe est l’ATP.
Le transport actif nécessite une protéine transmembranaire et cette molécule ne peut fonctionner que s’ il y a dégradation d’une molécule d’ATP (adénosine triphosphate)
A

A

A

A

A

A

A

A

A

A

Transport actif qui consomme de l’énergie, sens contraire du gradient de concentration

B) Transport des grosses molécules.

Endocytose / exocytose
Peut s’effectuer que si il y a déformation transitoire de la membrane.
Endocytose= entrée de grosses molécules

Exocytose= sortie de grosses molécules
Endocytose :
1)


Invagination


Vacuole


2)
Rabattement

Vacuole
A quoi sert l’Endocytose ?
-A la nutrition de la cellule

-A la défense de l’organisme

-Au stockage de certaines molécules

-Au transit
Endocytose

Vacuole

Exocytose

Les vacuoles présentes au sein de la cellules se dirigent vers la membrane plasmique et s’accolent puis fusionnent avec la membrane plasmique pour libérer son contenu a l’extérieur.

2.2.2 Formation du tissu Adhérence cellulaire.
La membrane est une structure qui permet de construire des tissus et permet la reconnaissance des cellules entre-elles.

Cette reconnaissance se fait grâce au CELL COAT.

L’adhérence se fait aussi par l’intermédiaire de ce CELL COAT et assure la formation des tissus, assurée aussi par les ions calcium, présents dans l’espace intercellulaire.
Il existe plusieurs types de jonctions :
Jonctions serrées :
(TIGHT JUNCTIONS)

Ce sont des régions de la membrane où il n’existe pas d’espace intercellulaire entre les deux cellules, c’est une jonction dite imperméable. Il n’y aura aucun passage de petites molécules entre ces deux jonctions.

On le trouve en particulier dans le tractus digestif.
Cellule 1

Cellule 2

Jonction

Membrane plasmique

Espace intercellulaire
Jonctions adhérentes :
On les trouve dans les organes qui sont soumis à de fortes pressions mécaniques, par exemple : le cœur.

C’est un complexe protéique qui exerce une pression contre la membrane et permet de maintenir les deux membranes proches l’une de l’autre. Ce qui permet à un groupe de cellules de fonctionner de manière coordonnée.
Cellule1

Cellule2

DESMOSOME

Espace intercellulaire, environ 20nm

Protéines

Jonctions Gap (communicantes) :
Ce sont des connexions permettant des échanges de petites molécules sans que les molécules ne passent dans le milieu extérieur.
On trouve ces jonctions :

-au cœur

-tissus nerveux

-tissus endocriniens (responsable des sécrétions hormonales)
Cellule1

Cellule 2

CONNECTIONS ; 2nm

2.2.3 Le Glycocallix.
-Il se trouve toujours sur la face extra cellulaire des membranes

-Il est formé de glucides accrochés à des lipides ou des protéines.

-Il permet la reconnaissance cellulaire.

-C’est dans le CELL COAT que se trouve la carte d’indenté de l’individu (élément du groupe sanguin)

-Il reconnaît les molécules dangereuses ainsi que les éléments étrangers à la cellule, il est à la base des réponses du système immunitaire.

-Il assure une certaine adhérence.

Le système membranaire interne
Toute cellule comprend des organites cellulaires, pour la plupart délimités par une membrane qui présente de grandes analogies avec la membrane plasmique.

En effet, ces membranes sont constituées de 3 couches mais la différence vient de leur membrane interne, il existe une différence de proportion de lipides et de protéines.
3 organites :

-le réticulum endoplasmique

-l’appareil de Golgi

-les lysosomes.


  1. Le réticulum endoplasmique :




    1. Structure et morphologie :


C’est un réseau de cavités plus ou moins aplaties qui s’étend dans tout le cytoplasme.

Il peut être granulaire  REG (réticulum endoplasmique granulaire), sur ces membranes il est recouvert par des ribosomes.

Il peut être lisse  REL (réticulum endoplasmique lisse) ne présente pas de ribosome.


    1. Fonctions :




      1. Fonction de synthèse :


Le réticulum (REG) grâce aux ribosomes est impliqué dans la synthèse des protéines.

Le réticulum endoplasmique lisse (REL) est impliqué dans la synthèse des lipides.
Dans les cavités du R.E les lipides ou protéines peuvent subir un certain nombre de modifications La maturation.


      1. Fonction de concentration :


Résulte de la morphologie du R.E dans lequel peut être stocké des protéines qui viennent soit du milieu extra cellulaire ou soit des protéines qui ont été fabriquées par la cellule.



      1. Fonction de transport :


Lié à la morphologie particulière qui s’étend dans toute la cellule et permet ainsi le transport de molécules qui ont été endocytées.


Exemple : Cellule Epiphéale de l’intestin.
Endocytose

Exocytose

SANG


      1. Fonction de détoxification.


Particulièrement remplie par les cellules du foie.

Le réticulum endoplasmique possède des enzymes qui sont capable de transformer des substances toxiques pour l’organisme en substances non toxiques, exemple dans le foie, HETANOL DESHYDROGENASE qui dégrade l’alcool.



  1. L’appareil de Golgi (AG) :


2.1 Structure :
Ensemble de cavités et de sacs organisés, dépourvus de ribosome.

L’appareil de Golgi est le seul organite dépourvu de ribosomes.

L’ensemble de cet empilement est un dictyosome (5 à 6 couches).

Il présente une polarité, face CIS, face TRANS, la face CIS est proche du réticulum endoplasmique, la face TRANS est proche de la membrane plasmique.
Face CIS

Face TRANS

2.2 Fonctions :
Il existe une fonction étroite entre le réticulum endoplasmique granulaire et l’appareil de Golgi.

L’appareil de Golgi joue un rôle dans la maturation des protéines provenant du réticulum endoplasmique et cette maturation passe par exemple par la glycolisation (ajout de glucides sur les protéines) destinée au CELL COAT par exemple.



  1. Les lysosomes :


Ce sont des organites issus de l’appareil de Golgi.

Ce sont des vésicules particulières qui ne contiennent que des enzymes.

Ils jouent un rôle fondamental dans le mécanisme de digestion intra cellulaire et de détoxification.

Leurs structures et leur fonctionnement sont liés à l’appareil de Golgi.
3.1 Structure :
Cela dépend de son état fonctionnel :
Lysosome primaire : Vésicule toute neuve, remplie d’enzymes qui viennent juste d’être libérées de l’appareil de Golgi, enzymes hydrolytiques.

Il devient secondaire lorsqu’il va « capturer » un substrat (gouttelette, ARN, globule lipidiques) à dégrader.

L’enzyme dégrade alors ce substrat et créée le corps résiduel (enzyme + produit de la digestion) soit il reste dans la cellule soit il est libéré par endocytose.
3.2 Fonctions:

Ils vont digérer des particules qui ont été absorbées par endocytose, permet l’élimination de molécules et de particules dangereuses pour l’organisme : réaction immunitaire.

-Permet la nutrition cellulaire.

-Rôle autophagique : dégradation des cellules vieillissantes.

-Autolyse de certains organes.

-Sécrétion d’enzymes en dehors de la cellule dans le cadre du remaniement de la trame osseuse.

-Peuvent entrer dans la genèse de certaines maladies lysosomiales : soit un excès d’enzymes, soit un déficit.

Le hyaloplasme et le cytosquelette
Ils ne sont pas délimités par une membrane.


  1. Le hyaloplasme


Elément de remplissage de la cellule, ayant une constitution plus ou moins visqueuse en fonction de la quantité d’eau présente.

Il contient de l’eau, des oses (glucose), des ions, des acides aminés, des acides nucléiques, des enzymes (protéines), des sels minéraux, de l’ARN (acide ribonucléique), ARNm (ARN messager),

ARNt (ARN de transfert), ARNr (ARN ribosomal).
C’est le lieu où se déroule une grande partie des réactions biochimiques (dégradation, fabrication…)

Il joue une fonction dans le transport de molécules au sein de la cellule.


  1. Le cytosquelette


Il résulte de l’assemblage de protéines, caractéristique des cellules eucaryotes et c’est le cytosquelette qui donne à la cellule sa forme.

Grâce au cytosquelette les organites peuvent se déplacer dans la cellule.

Le cytosquelette est également impliqué dans le déplacement des cellules.
2.1 Les microtubules

Les microtubules sont un assemblage de protéines  tubuline

C’est un ensemble de plusieurs filaments de tubulines (13)

On les trouve à 3 endroits différents :

-les flagelles des spermatozoïdes

-dans les cils des cellules ciliées de l’oreille

Assemblage de microtubules

-dans les centrioles ; structure typique des cellules eucaryotes qui ont la forme de cylindres disposés perpendiculairement l’une à l’autre.



    1. Les micros filaments


Protéines : lactine et la myosine ; 2 protéines qui se trouvent ensemble dans les cellules musculaires.

La lactine seule peut être trouvée dans toute les cellules et elle intervient en particulier dans les courants membranaires : elle sert aux déformations de la membrane (endocytose et exocytose).


    1. Les filaments intermédiaires :


Ils sont intermédiaires entre les microtubules et les micros filaments.

Groupe « fourre tout » dans lequel on trouve des neurofilaments (qui permettent le maintient de la forme des neurones) qui se trouvent dans les neurones et permet de transporter des vésicules contenant des neurotransmetteurs.
Les Ribosomes


  1. Structure et constitution chimique :


Unité globulaire qui a un diamètre d’environ 15 nanomètres.

Ils sont composés de 2 sous unités, une petite cellule et une grande, et lorsque le ribosome n’est pas fonctionnel c’est 2 sous unités sont séparées elle ne se réunissent que lorsqu’il y a synthèse des protéines.

Ces 2 sous unités sont formées d’ARN et de protéines ribosomales.

Ces 2 sous unités sont fabriquées dans le noyau cellulaire.
Ils sont soit libres soit attachés au réticulum endoplasmique.


  1. Rôle et fonctions :


La synthèse des protéines ne peut se faire que si il y a l’association des 2 sous unités et la fabrication d’un brin d’ARN messager.

Cette synthèse peut se faire au niveau du réticulum endoplasmique ou dans le cytoplasme va généralement impliquer le polysome (plusieurs ribosomes associés) et des ARNm = TRADUCTION de l’ARNm par le ribosome et cette traduction donne lieu a une protéine.

La traduction a toujours lieu dans le cytoplasme.

Les globules rouges n’ont pas de ribosomes car ils ne produisent pas de protéines.
ARNm

ARNt (de transfert)

ARNm (vient du noyau)

Cytoplasme

Acide aminé


Le noyau


  1. Structure /Nombre :


Sans noyau, une cellule dégénère. Il y a un noyau par cellule, parfois deux (cellule du foie), ou plusieurs (cellule musculaire) parfois il n’y en a pas (les globules rouges).
Généralement le noyau a une taille proportionnelle à la taille de la cellule sauf dans les cellules embryonnaires où la taille du noyau est plus importante et dans les cellules vieillissantes où le noyau est plus petit car la cellule meurt.
A quoi ressemble le noyau ?

25 à 10 nm
Nucléoplasme (=hyaloplasme)

Chromatine décondensée

Chromatine condensée

Le nucléole

Pores nucléaires (permet les échanges intra et extra cellulaire)

Enveloppe nucléaire (double) membrane externe et interne.
1.2 L’enveloppe nucléaire :
Elle est constituée de deux membranes :

-externe (en contact avec le réticulum endoplasmique

-interne
Elle est constituée de pores  assemblage de Proteines qui fait office de protéine tunnel.
1.3 Le Nucléoplasme :
C’est l’équivalent du hyaloplasme (milieu de remplissage)
1.4 Le nucléole :
C’est un ensemble d’ARN ribosomaux et d’ADN. Le nucléole est responsable de la synthèse des ARN ribosomaux.


    1. La chromatine :


Elle peut être condensée ou décondensée C’est de l’ADN avec des protéines.

C’est sur la chromatine non condensée que s’effectue l’étape de transcription.


  1. Fonctions :


2.1 Fonctions hétéro catalytique = hétéro synthétique :
La fonction hétéro synthétique consiste à fabriquer de l’ARN messager =processus de transcription.
ADN

TRANSCRIPTION

TRADUCTION

ARN

(Cytoplasme)

(Noyau)


TRANSCRIPTION

ADN  ARN (dans le noyau)
Cytoplasme
TRADUCTION


Ribosomes


PROTEINE


2.2 Activité auto synthétique (duplication) :
Processus de réplication qui a lieu dans le noyau  nouvelle synthèse de l’ADN.

Les organites semi autonomes
(Capable de produire de l’énergie au sein de la cellule)
ATP= Adénosine triphosphate ; molécule d’énergie.

Ils ont leur propre matériel génétique  ADN (circulaire)


  1. Les mitochondries :




    1. Morphologie :


Membrane externe (ressemble à la membrane plasmique)

Espace inter membranaire

ATPosome

Membrane interne

La matrice mitochondriale (endroit ou se déroule de nombreuse réactions ribosomales

Crête mitochondriale

Matrice
La mitochondrie fait 6 micromètres de long, dans la matrice on trouve l’ADN.


    1. La fonction respiratoire de la mitochondrie :


Cette fonction consiste à produire de l’énergie par une étape d’oxydation (en particulier des sucres et des acides gras).

Cette production d’énergie commence dans le cytoplasme :
Glucose

Acide pyruvique

Cycle de crête

O2

NADPH


Dans le cytoplasme se déroule la glycolisation  transformation du glucose en acide pyruvique, il rentre ensuite dans la matrice et il subit des transformations qui leurs permettent d’intégrer le cycle de crête qui permet la libération de l’O2 et va surtout permettre la libération de protons et d’électrons, ils vont être pris en charge par des transporteurs  le NADPH qui va partir dans les crêtes mitochondriales et au niveau des crêtes, 5 gros complexes enzymatiques.

A la fin libérations de protons production d’eau.

Soit ils se combinent pour donner de l’eau, soit ils retournent dans la matrice et contribuent à l’ATP.
1 mol de glucose 38 ATP.

similaire:

Introduction à la biologie cellulaire iconProgramme 1 Introduction à la biologie cellulaire composition et...

Introduction à la biologie cellulaire iconCe cours est une introduction à la biologie cellulaire ainsi qu’à...

Introduction à la biologie cellulaire icon1. Introduction… Equilibre hormonal, régulation cellulaire, fonctionnement...

Introduction à la biologie cellulaire iconBiologie cellulaire

Introduction à la biologie cellulaire iconBiologie cellulaire

Introduction à la biologie cellulaire iconBiologie cellulaire part 2

Introduction à la biologie cellulaire iconModule Biologie cellulaire II

Introduction à la biologie cellulaire iconMatière d’œuvre de Biologie humaine et cellulaire et moléculaire

Introduction à la biologie cellulaire iconSous-colle n°4 – Biologie Cellulaire Spéciale Méthodes

Introduction à la biologie cellulaire iconMatière d’œuvre de Biologie humaine et cellulaire et moléculaire








Tous droits réservés. Copyright © 2016
contacts
b.21-bal.com